I smoke electronic cigarettes and recently I wanted to find out how much nicotine liquid I consume per day. I noted the used amount on five consecutive days:

3 ml, 3.4 ml, 7.2 ml, 3.7 ml, 4.3 ml

So how much do I use per day? Well, our best guess is to do the average, that is, sum all the amounts and divide by the number of measurements:

(3 ml + 3.4 ml + 7.2 ml + 3.7 ml + 4.3 ml) / 5 = 4.3 ml

Most people would stop here. However, there’s one very important piece of information missing: how accurate is that result? Surely an average value of 4.3 ml computed from 100 measurements is much more reliable than the same average computed from 5 measurements. Here’s where the standard error comes in and thanks to the internet, calculating it couldn’t be easier. You can type in the measurements here to get the standard error:

http://www.miniwebtool.com/standard-error-calculator/

It tells us that the standard error (of the mean, to be pedantically precise) of my five measurements is SEM = 0.75. This number is extremely useful because there’s a rule in statistics that states that** with a 95 % probability,** **the true average lies within two standard errors of the computed average**. For us this means that there’s a 95 % chance, which you could call beyond reasonable doubt, that the true average of my daily liquid consumption lies in this intervall:

4.3 ml ± 1.5 ml

or between 2.8 and 5.8 ml. So the computed average is not very accurate. Note that as long as the standard deviation remains more or less constant as further measurements come in, the standard error is inversely proportional to the square root of the number of measurements. In simpler terms: If you quadruple the number of measurements, the size of the error interval halves. With 20 instead of only 5 measurements, we should be able to archieve plus/minus 0.75 accuracy.

So when you have an average value to report, be sure to include the error intervall. Your result is much more informative this way and with the help of the online calculator as well as the above rule, computing it is quick and painless. It took me less than a minute.

A more detailed explanation of the average value, standard deviation and standard error (yes, the latter two are not the same thing) can be found in chapter 7 of my Kindle ebook Statistical Snacks (this was not an excerpt).

### Like this:

Like Loading...

*Related*

Thanks for the explanation. Can you please explain why the SEM(=0.75) was doubled while finding the interval? I understood that as per “a rule in statistics states that with a 95 % probability, the true average lies within two standard errors of the computed average” – the interval will be 4.3ml +- 0.75ml. But it is 4.3ml +- 1.5ml. Kindly explain further.