Exponential Functions and their Derivatives (including Examples)

Exponential functions have the general form:

Derivatives_html_28f62f1b

with two constants a and b (called base). It’s quite common to use Euler’s number e = 2.7182… as the base and the exponential function expressed as such:

Derivatives_html_m55d6ad0b

with two constants a and c. Converting from one form to the other is not that difficult, just use ec = b or c = ln(b). Here’s how it works:

Derivatives_html_m3951e5f

Derivatives_html_59deade

As for the plot, you should keep two special cases in mind. For b > 1 (which corresponds to c > 0 in case of base e), the function goes through the point P(0,a) and goes to infinity as x goes to infinity.

Derivatives_html_m47952ca3

(Exponential function with b > 1 or c > 0. For example: f(x) = 8·3x)

This is exponential growth. When 0 < b < 1 (or c < 0) this turns into exponential decline. The function again goes through the point P(0,a), but approaches zero as x goes to infinity.

Derivatives_html_m3039be7

(Exponential function with 0 < b < 1 or c < 0. For example: f(x) = 0.5x)

Here’s how the differentiation of exponential functions works. Given the function:

Derivatives_html_28f62f1b

 The first derivative is:

Derivatives_html_1caa28b5

For the case of base e:

Derivatives_html_m55d6ad0b

We get:

Derivatives_html_m7e6aad94

You should remember both formulas. Note that the exponential functions have the unique property that their first derivative (slope) is proportional to the function value (height above x-axis). So the higher the curve, the sharper it rises. This is why exponential growth is so explosive.

———————————————–>

Example 1:

Derivatives_html_m59848e08

Derivatives_html_m30687e30

Example 2:

Derivatives_html_m79ef2f66

Derivatives_html_1f8b7d15

Example 3:

Derivatives_html_3b1b3aeb

Derivatives_html_729444d5

Derivatives_html_2c9b781e

Derivatives_html_m63701786

Derivatives_html_74dba73b

Example 4:

Derivatives_html_m43291588

Derivatives_html_6f6b9781

<———————————————–

If exponential functions are combined with power or polynomial functions, just use the sum rule.

———————————————–>

Example 5:

Derivatives_html_6de189e

Derivatives_html_5a9fe046

Derivatives_html_m7f2d5936

Derivatives_html_753619fa

Derivatives_html_63759307

Example 6:

Derivatives_html_m1e3db122

Derivatives_html_42e3abb4

Derivatives_html_4069df23

Derivatives_html_m3887b4fe

Derivatives_html_m517177dd

(This was an excerpt from the FREE ebook “Math Shorts – Derivatives”)

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s