Antimatter Production – Present and Future

When it comes to using antimatter for propulsion, getting sufficient amounts of the exotic fuel is the biggest challenge. For flights within the solar system, hybrid concepts would require several micrograms of antimatter, while pure antimatter rockets would consume dozens of kilograms per trip. And going beyond the solar system would demand the production of several metric tons and more.

We are very, very far from this. Currently around 10 nanograms of anti-protons are produced in the large particles accelerators each year. At this rate it would take 100 years to produce one measly microgram and 100 billion years to accumulate one kilogram. However, the antimatter production rate has seen exponential growth, going up by sixteen orders of magnitude over the past decades, and this general trend will probably continue for some time.

Even with a noticeable slowdown in this exponential growth, gram amounts of anti-protons could be manufactured each year towards the end of the 21st century, making hybrid antimatter propulsion feasible. With no slowdown, the rate could even reach kilograms per year by then. While most physicists view this as an overly optimistic estimate, it is not impossible considering the current trend in antimatter production and the historic growth of liquid hydrogen and uranium production rates (both considered difficult to manufacture in the past).

There is still much to be optimized in the production of antimatter. The energy efficiency at present is only 10-9, meaning that you have to put in one gigajoule of pricey electric energy to produce a single joule of antimatter energy. The resulting costs are a staggering 62.5 trillion USD per gram of anti-protons, making antimatter the most expensive material known to man. So if you want to tell your wife how precious she is to you (and want to get rid of her at the same time), how about buying her a nice anti-matter scarf?

Establishing facilities solely dedicated to antimatter production, as opposed to the by-product manufacturing in modern particle accelerators, would significantly improve the situation. NASA experts estimate that an investment of around 5 billion USD is sufficient to build such a first generation antimatter factory. This step could bring the costs of anti-protons down to 25 billion USD per gram and increase the production rate to micrograms per year.

While we might not see kilogram amounts of antimatter or antimatter propulsion systems in our lifetime, the production trend over the next few decades will reveal much about the feasibility of antimatter rockets and interstellar travel. If the optimists are correct, and that’s a big if, the grandchildren of our grandchildren’s grandchildren might watch the launch of the first spacecraft capable of reaching neighboring stars. Sci-fi? I’m sure that’s what people said about the Moon landing and close-up pictures from Mars and Jupiter just a lifetime ago.

For more information, check out my ebook Antimatter Propulsion.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s