Mass is such a fundamental property of matter that it is hard to define without drifting into philosophical realms. Newton’s Second Law provides a great way to understand mass from a physical point of view. The law states that force F (in N) is the product of mass m (in kg) and acceleration a (in m/s²):

F = m · a

So according to this, mass is a measure of an object’s resistance to a change in speed. If the mass is small, a small force is sufficient to produce a noticeable acceleration. However, much more force is necessary to produce the same acceleration for a massive object.

Another way of looking at mass is provided by Newton’s Law of Gravitation. Newton found that the attracting gravitational force between two objects is proportional to the product of their masses m and M:

F ~ m · M

So additionally to creating resistance to changes in state of motion, mass is also the source of gravitational attraction. It seems obvious that in both cases we are talking about the same quantity. But is this actually the case? Is the inertial mass, the mass responsible for opposing changes in velocity, really the same as the gravitational mass, that gives rise to gravity?

This question has led to heated debates among physicist for centuries. All experiments conducted so far, with ever increasing accuracy, have shown that indeed the inertial mass is identical to the gravitational mass. Today, almost all physicists have accepted this equivalence as reality.

The SI unit of mass is kilograms. Ever since 1889, one kilogram has been defined as the mass of the international prototype kilogram (IPK) that is stored in the International Bureau of Weights and Measures in Paris. However, during the 24th General Conference on Weights and Measures that took place in 2011, physicists have agreed to redefine this unit by connecting it to the Planck constant.

Other units that are commonly used for mass are grams (1/1000 of a kilogram), the pound (equal to about 0.45 kilograms) and the tonne (equal to 1000 kilograms). For atoms and molecules scientists use the atomic mass unit u. One u is equivalent to 1.66 · 10-27 kg, which is roughly the mass of a neutron or proton.

(This was an excerpt from Physics! In Quantities and Examples)