experiments

The Placebo Effect – An Overview

There is a major problem with reliance on placebos, like most vitamins and antioxidants. Everyone gets upset about Big Science, Big Pharma, but they love Big Placebo.

– Michael Specter

A Little White Lie

In 1972, Blackwell invited fifty-seven pharmacology students to an hour-long lecture that, unbeknownst to the students, had only one real purpose: bore them. Before the tedious lecture began, the participants were offered a pink or a blue pill and told that the one is a stimulant and the other a sedative (though it was not revealed which color corresponded to which effect – the students had to take their chances). When measuring the alertness of the students later on, the researchers found that 1) the pink pills helped students to stay concentrated and 2) two pills worked better than one. The weird thing about these results: both the pink and blue pills were plain ol’ sugar pills containing no active ingredient whatsoever. From a purely pharmacological point of view, neither pill should have a stimulating or sedative effect. The students were deceived … and yet, those who took the pink pill did a much better job in staying concentrated than those who took the blue pill, outperformed only by those brave individuals who took two of the pink miracle pills. Both the effects of color and number have been reproduced. For example, Luchelli (1972) found that patients with sleeping problems fell asleep faster after taking a blue capsule than after taking an orange one. And red placebos have proven to be more effective pain killers than white, blue or green placebos (Huskisson 1974). As for number, a comprehensive meta-analysis of placebo-controlled trials by Moerman (2002) confirmed that four sugar pills are more beneficial than two. With this we are ready to enter another curious realm of the mind: the placebo effect, where zero is something and two times zero is two times something.

The Oxford Dictionary defines the placebo effect as a beneficial effect produced by a placebo drug or treatment, which cannot be attributed to the properties of the placebo itself and must therefore be due to the patient’s belief in that treatment. In short: mind over matter. The word placebo originates from the Bible (Psalm 116:9, Vulgate version by Jerome) and translates to “I shall please”, which seems to be quite fitting. Until the dawn of modern science, almost all of medicine was, knowingly or unknowingly, based on this effect. Healing spells, astrological rituals, bloodletting … We now know that any improvement in health resulting from such crude treatments can only arise from the fact that the patient’s mind has been sufficiently pleased. Medicine has no doubt come a long way and all of us profit greatly from this. We don’t have to worry about dubious healers drilling holes into our brains to “relieve pressure” (an extremely painful and usually highly ineffective treatment called trepanning), we don’t have to endure the unimaginable pain of a surgeon cutting us open and we live forty years longer than our ancestors. Science has made it possible. However, even in today’s technology-driven world one shouldn’t underestimate the healing powers of the mind.

Before taking a closer look at relevant studies and proposed explanations, we should point out that studying the placebo effect can be a rather tricky affair. It’s not as simple as giving a sugar pill to an ill person and celebrating the resulting improvement in health. All conditions have a certain natural history. Your common cold will build up over several days, peak over the following days and then slowly disappear. Hence, handing a patient a placebo pill (or any other drug for that matter) when the symptoms are at their peak and observing the resulting improvement does not allow you to conclude anything meaningful. In this set-up, separating the effects of the placebo from the natural history of the illness is impossible. To do it right, researchers need one placebo group and one natural history (no-treatment) group. The placebo response is the difference that arises between the two groups. Ignoring natural history is a popular way of “proving” the effectiveness of sham healing rituals and supposed miracle pills. You can literally make any treatment look like a gift from God by knowing the natural history and waiting for the right moment to start the treatment. One can already picture the pamphlet: “93 % of patients were free of symptoms after just three days, so don’t miss out on this revolutionary treatment”. Sounds great, but what they conveniently forget to mention is that the same would have been true had the patients received no treatment.

There are also ethical consideration that need to be taken into account. Suppose you wanted to test how your placebo treatment compares to a drug that is known to be beneficial to a patient’s health. The scientific approach demands setting up one placebo group and one group that receives the well-known drug. How well your placebo treatment performs will be determined by comparing the groups after a predetermined time has passed. However, having one placebo group means that you are depriving people of a treatment that is proven to improve their condition. It goes without saying that this is highly problematic from an ethical point of view. Letting the patient suffer for the quest of knowledge? This approach might be justified if there is sufficient cause to believe that the alternative treatment in question is superior, but this is rarely the case for placebo treatments. While beneficial, their effect is usually much weaker than that of established drugs.

Another source of criticism is the deception of the patient during a placebo treatment. Doctors prefer to be open and honest when discussing a patient’s conditions and the methods of treatment. But a placebo therapy requires them to tell patients that the prescribed pill contains an active ingredient and has proven to be highly effective when in reality it’s nothing but sugar wrapped in a thick layer of good-will. Considering the benefits, we can certainly call it a white lie, but telling it still makes many professionals feel uncomfortable. However, they might be in luck. Several studies have suggested that, surprisingly, the placebo effect still works when the patient is fully aware that he receives placebo pills.

Experimental Evidence

One example of this is the study by Kaptchuk et al. (2010). The Harvard scientists randomly assigned 80 patients suffering from irritable bowel syndrome (IBS) to either a placebo group or no-treatment group. The patients in the placebo group received a placebo pill along with the following explanation: “Placebo pills are made of an inert substance, like sugar pills, and have been shown in clinical studies to produce significant improvement in IBS symptoms through mind-body self-healing processes”. As can be seen from the graph below, the pills did their magic. The improvement in the placebo group was roughly 30 % higher than in the no-treatment group and the low p-value (see appendix for an explanation of the p-value) shows that it is extremely unlikely that this result came to be by chance. Unfortunately, there seems to be a downside to the honesty. Hashish (1988) analyzed the effects of real and sham ultrasound treatment on patients whose impacted lower third molars had been surgically removed and concluded that the effectiveness in producing a placebo response is diminished if the patient comes to understand that the therapy is a placebo treatment rather than the “real” one. So while the placebo-effect does arise even without the element of deception, a fact that is quite astonishing on its own, deception does strengthen the response to the placebo treatment.

plac1

Results of Kaptchuk et al. (2010)

Let’s explore some more experimental studies to fully understand the depth and variety of the placebo effect. A large proportion of the relevant research has focused on the effect’s analgesic nature, that is, its ability to reduce pain without impairing consciousness. Amanzio et al. (2001) examined patients who had undergone thoracotomy, a major surgical procedure to gain access to vital organs in the chest and one that is often associated with severe post-operative pain. As handing out sugar pills would have been irresponsible and unethical in this case, the researchers found a more humane method of unearthing the placebo effect: the open-hidden paradigm. All patients received powerful painkillers such as Morphine, Buprenorphine, Tramadol, … However, while one group received the drug in an open manner, administered by a caring clinician in full view of the patient, another group was given the drug in a hidden manner, by means of a computer-programmed drug infusion pump with no clinician present and no indication that the drug was being administered. This set-up enabled the researchers to determine how much of the pain reduction was due to the caring nature of the clinician and the ritual of injecting the drug. The results: the human touch matters and matters a lot. As can be seen from the graph below, every painkiller became significantly more effective when administered in an open fashion. Several follow-on studies (Benedetti et al. 2003, Colloca et al. 2004) confirmed this finding. This demonstrates that the placebo effect goes far beyond the notorious sugar pill, it can also be induced by the caring words of a professional or a dramatic treatment ritual.

plac2
Results of Amanzio et al. (2001)

The fact that the human touch is of major importance in any clinical treatment, placebo or otherwise, seems pretty obvious (though its power in reducing pain might have surprised you). Much less obvious are the roles of administration form and treatment ritual, something we shall further explore. For both we can use the following rule of thumb: the more dramatic the intervention, the stronger the placebo response. For example, several studies have shown that an injection with salt-water is more effective in generating the placebo effect than a sugar pill. This is of course despite the fact that both salt-water and sugar pills do not have any direct medical benefits. The key difference lies in the inconveniences associated with the form of delivery: while swallowing a pill takes only a moment and is a rather uncomplicated process, the injection, preparation included, might take up to several minutes and can be quite painful. There’s no doubt that the latter intervention will leave a much stronger impression. Another study (Kaptchuk et al. 2006) came to the exciting conclusion that a nonsensical therapeutic intervention modeled on acupuncture did a significantly better job in reducing arm pain than the sugar pill. While the average pain score in the sham acupuncture group dropped by 0.33 over the course of one week, the corresponding drop in the sugar pill group was only 0.15. Again the more dramatic treatment came out on top.

The experimental results mentioned above might explain why popular ritualistic treatments found in alternative medicine remain so widespread even when there are numerous studies providing ample proof that the interventions lack biological plausibility and produce no direct medical benefits. Despite their scientific shortcomings, such treatments do work. However, this feat is extremely unlikely to be accomplished by strengthening a person’s aura, enhancing life force or harnessing quantum energy, as the brochure might claim. They work mainly (even solely) because of their efficiency in inducing the mind’s own placebo effect. Kaptchuk’s study impressively demonstrates that you can take any arbitrary ritual, back it up with any arbitrary theory to give the procedure pseudo-plausibility and let the placebo effect take over from there. Such a treatment might not be able to compete with cutting-edge drugs, but the benefits will be there. Though one has to wonder about the ethics of providing a patient with a certain treatment when demonstrably a more effective one is available, especially in case of serious diseases.

Don’t Forget Your Lucky Charm

This seems to be a great moment to get in the following entertaining gem. In 2010, Damish et al. invited twenty-eight people to the University of Cologne to take part in a short but sweet experiment that had them play ten balls on a putting green. Half of the participants were given a regular golf ball and managed to get 4.7 putts out of 10 on average. The other half was told they would be playing a “lucky ball” and, sure enough, this increased performance by an astonishing 36 % to 6.4 putts out of 10. I think we can agree that the researchers hadn’t really gotten hold of some magical performance-enhancing “lucky ball” and that the participants most likely didn’t even believe the story of the blessed ball. Yet, the increase was there and the result statistically significant despite the small sample size. So what happened? As you might have expected, this is just another example of the placebo effect (in this particular case also called the lucky charm effect) in action.

OK, so the ball was not really lucky, but it seems that simply floating the far-fetched idea of a lucky ball was enough to put participants into a different mindset, causing them to approach the task at hand in a different manner. One can assume that the story made them less worried about failing and more focused on the game, in which case the marked increase is no surprise at all. Hence, bringing a lucky charm to an exam might not be so superstitious after all. Though we should mention that a lucky charm can only do its magic if the task to be completed requires some skill. If the outcome is completely random, there simply is nothing to gain from being put into a different mindset. So while a lucky charm might be able to help a golfer, student, chess player or even a race car driver, it is completely useless for dice games, betting or winning the lottery.

Let’s look at a few more studies that show just how curious and complex the placebo effect is before moving on to explanations. Shiv et al. (2008) from the Stanford Business School analyzed the economic side of self-healing. They applied electric shocks to 82 participants and then offered them to buy a painkiller (guess that’s also a way to fund your research). The option: get the cheap painkiller for $ 0.10 per pill or the expensive one for $ 2.50 per pill. What the participants weren’t told was that there was no difference between the pills except for the price. Despite that, the price did have an effect on pain reduction. While 61 % of the subjects taking the cheap painkiller reported a significant pain reduction, an impressive 85 % reported the same after treating themselves to the expensive version. The researchers suspect that this is a result of quality expectations. We associate high price with good quality and in case of painkillers good quality equals effective pain reduction. So buying the expensive brand name drug might not be such a bad idea even when there is a chemically identical and lower priced generic drug available. In another study, Shiv et al. also found the same effect for energy drinks. The more expensive energy drink, with price being the only difference, made people report higher alertness and noticeably enhanced their ability to solve word puzzles.

 

This was an excerpt from my Kindle e-book Curiosities of the Mind. To learn more about the placebo effect, as well as other interesting psychological effects such as the chameleon effect, Mozart effect and the actor-observer bias, click here. (Link to Amazon.com)

Intensity: How Much Power Will Burst Your Eardrums?

Under ideal circumstances, sound or light waves emitted from a point source propagate in a spherical fashion from the source. As the distance to the source grows, the energy of the waves is spread over a larger area and thus the perceived intensity decreases. We’ll take a look at the formula that allows us to compute the intensity at any distance from a source.

Great Formulas_html_7230225e

First of all, what do we mean by intensity? The intensity I tells us how much energy we receive from the source per second and per square meter. Accordingly, it is measured in the unit J per s and m² or simply W/m². To calculate it properly we need the power of the source P (in W) and the distance r (in m) to it.

I = P / (4 · π · r²)

This is one of these formulas that can quickly get you hooked on physics. It’s simple and extremely useful. In a later section you will meet the denominator again. It is the expression for the surface area of a sphere with radius r.

Before we go to the examples, let’s take a look at a special intensity scale that is often used in acoustics. Instead of expressing the sound intensity in the common physical unit W/m², we convert it to its decibel value dB using this formula:

dB ≈ 120 + 4.34 · ln(I)

with ln being the natural logarithm. For example, a sound intensity of I = 0.00001 W/m² (busy traffic) translates into 70 dB. This conversion is done to avoid dealing with very small or large numbers. Here are some typical values to keep in mind:

0 dB → Threshold of Hearing
20 dB → Whispering
60 dB → Normal Conversation
80 dB → Vacuum Cleaner
110 dB → Front Row at Rock Concert
130 dB → Threshold of Pain
160 dB → Bursting Eardrums

No onto the examples.

———————-

We just bought a P = 300 W speaker and want to try it out at maximal power. To get the full dose, we sit at a distance of only r = 1 m. Is that a bad idea? To find out, let’s calculate the intensity at this distance and the matching decibel value.

I = 300 W / (4 · π · (1 m)²) ≈ 23.9 W/m²

dB ≈ 120 + 4.34 · ln(23.9) ≈ 134 dB

This is already past the threshold of pain, so yes, it is a bad idea. But on the bright side, there’s no danger of the eardrums bursting. So it shouldn’t be dangerous to your health as long as you’re not exposed to this intensity for a longer period of time.

As a side note: the speaker is of course no point source, so all these values are just estimates founded on the idea that as long as you’re not too close to a source, it can be regarded as a point source in good approximation. The more the source resembles a point source and the farther you’re from it, the better the estimates computed using the formula will be.

———————-

Let’s reverse the situation from the previous example. Again we assume a distance of r = 1 m from the speaker. At what power P would our eardrums burst? Have a guess before reading on.

As we can see from the table, this happens at 160 dB. To be able to use the intensity formula, we need to know the corresponding intensity in the common physical quantity W/m². We can find that out using this equation:

160 ≈ 120 + 4.34 · ln(I)

We’ll subtract 120 from both sides and divide by 4.34:

40 ≈ 4.34 · ln(I)   

9.22 ≈ ln(I)

The inverse of the natural logarithm ln is Euler’s number e. In other words: e to the power of ln(I) is just I. So in order to get rid of the natural logarithm in this equation, we’ll just use Euler’s number as the basis on both sides:

e^9.22 ≈ e^ln(I)

10,100 ≈ I

Thus, 160 dB correspond to I = 10,100 W/m². At this intensity eardrums will burst. Now we can answer the question of which amount of power P will do that, given that we are only r = 1 m from the sound source. We insert the values into the intensity formula and solve for P:

10,100 = P / (4 · π · 1²)

10,100 = 0.08 · P

P ≈ 126,000 W

So don’t worry about ever bursting your eardrums with a speaker or a set of speakers. Not even the powerful sound systems at rock concerts could accomplish this.

———————-

This was an excerpt from the ebook “Great Formulas Explained – Physics, Mathematics, Economics”, released yesterday and available here: http://www.amazon.com/dp/B00G807Y00.

Mathematics of Explosions

When a strong explosion takes place, a shock wave forms that propagates in a spherical manner away from the source of the explosion. The shock front separates the air mass that is heated and compressed due to the explosion from the undisturbed air. In the picture below you can see the shock sphere that resulted from the explosion of Trinity, the first atomic bomb ever detonated.

Great Formulas_html_m67b54715

Using the concept of similarity solutions, the physicists Taylor and Sedov derived a simple formula that describes how the radius r (in m) of such a shock sphere grows with time t (in s). To apply it, we need to know two additional quantities: the energy of the explosion E (in J) and the density of the surrounding air D (in kg/m3). Here’s the formula:

r = 0.93 · (E / D)0.2 · t0.4

Let’s apply this formula for the Trinity blast.

———————-

In the explosion of the Trinity the amount of energy that was released was about 20 kilotons of TNT or:

E = 84 TJ = 84,000,000,000,000 J

Just to put that into perspective: in 2007 all of the households in Canada combined used about 1.4 TJ in energy. If you were able to convert the energy released in the Trinity explosion one-to-one into useable energy, you could power Canada for 60 years.

But back to the formula. The density of air at sea-level and lower heights is about D = 1.25 kg/m3. So the radius of the sphere approximately followed this law:

r = 542 · t0.4

After one second (t = 1), the shock front traveled 542 m. So the initial velocity was 542 m/s ≈ 1950 km/h ≈ 1210 mph. After ten seconds (t = 10), the shock front already covered a distance of about 1360 m ≈ 0.85 miles.

How long did it take the shock front to reach people two miles from the detonation? Two miles are approximately 3200 m. So we can set up this equation:

3200 = 542 · t0.4

We divide by 542:

5.90 t0.4

Then take both sides to the power of 2.5:

t 85 s ≈ 1 and 1/2 minutes

———————-

Let’s look at how the different parameters in the formula impact the radius of the shock sphere:

  • If you increase the time sixfold, the radius of the sphere doubles. So if it reached 0.85 miles after ten seconds, it will have reached 1.7 miles after 60 seconds. Note that this means that the speed of the shock front continuously decreases.

For the other two parameters, it will be more informative to look at the initial speed v (in m/s) rather the radius of the sphere at a certain time. As you noticed in the example, we get the initial speed by setting t = 1, leading to this formula:

v = 0.93 · (E / D)0.2

  • If you increase the energy of the detonation 35-fold, the initial speed of the shock front doubles. So for an atomic blast of 20 kt · 35 = 700 kt, the initial speed would be approximately 542 m /s · 2 = 1084 m/s.

  • The density behaves in the exact opposite way. If you increase it 35-fold, the initial speed halves. So if the test were conducted at an altitude of about 20 miles (where the density is only one thirty-fifth of its value on the ground), the shock wave would propagate at 1084 m/s

Another field in which the Taylor-Sedov formula is commonly applied is astrophysics, where it is used to model Supernova explosions. Since the energy released in such explosions dwarfs all atomic blasts and the surrounding density in space is very low, the initial expansion rate is extremely high.

This was an excerpt from the ebook “Great Formulas Explained – Physics, Mathematics, Economics”, released yesterday and available here: http://www.amazon.com/dp/B00G807Y00. You can take another quick look at the physics of shock waves here: Mach Cone.

A tunnel through earth and a surprising result …

Recently I found an interesting problem: A straight tunnel is being drilled through the earth (see picture; tunnel is drawn with two lines) and rails are installed in the tunnel. A train travels, only driven by gravitation and frictionless, along the rails. How long does it take the train to travel through this earth tunnel of length l?

The calculation, shows a surprising result. The travel time is independent of the length l; the time it takes the train to travel through a 1 Km tunnel is the same as through a 5000 Km tunnel, about 2500 seconds or 42 minutes! Why is that?

Imagine a model train on rails. If you put the rails on flat ground, the train won’t move. The gravitational force is pulling on the train, but not in the direction of travel. If you incline the rails slighty, the train starts to move slowly, if you incline the rails strongly, it rapidly picks up speed.

Now lets imagine a tunnel through the earth! A 1 Km tunnel will only have a slight inclination and the train would accelerate slowly. It would be a pleasant trip for the entire family. But a 5000 Km train would go steeply into the ground, the train would accelerate with an amazing rate. It would be a hell of a ride! This explains how we always get the same travel time: the 1 Km tunnel is short and the velocity would remain low, the 5000 Km is long, but the velocity would become enormous.

Here is how the hell ride through the 5000 Km tunnel looks in detail:

The red, monotonous increasing curve, shows distance traveled (in Km) versus time (in seconds), the blue curve shows velocity (in Km/s) versus time. In the center of the tunnel the train reaches the maximum velocity of about 3 Km/s, which corresponds to an incredible 6700 mi/h!

The Fourth State of Matter – Plasmas

From our everyday lifes we are used to three states of matter: solid, liquid and gas. When we heat a solid it melts and becomes liquid. Heating this liquid further will cause it to evaporate to a gas. Usually this is what we consider to be the end of the line. But heating a gas leads to many surprises, it eventually turns into a state, which behaves completely different than ordinary gases. We call matter in that state a plasma.

 To understand why at some point a gas will exhibit an unusual behaviour, we need to look at the basic structure of matter. All matter consists of atoms. The Greeks believed this to be the undivisible building blocks of all objects. Scientists however have discovered, that atoms do indeed have an inner structure and are divisible. It takes an enormous amount to split atoms, but it can be done.

 Further research showed that atoms consist of three particles: neutrons, protons and electrons. The neutrons and protons are crammed into the atomic core, while the electrons surround this core. Usually atoms are not charged, because they contain as much protons (positively charged) as electrons (negatively charged). The charges balance each other. Only when electrons are missing does the atom become electric. Such charged atoms are called ions.

 In a gas the atoms are neutral. Each atom has as many protons as electrons, they are electrically balanced. When you apply a magnetic field to a gas, it does not respond. If you try to use the gas to conduct electricity, it does not work.

 Remember that gas molecules move at high speeds and collide frequently with each other. As you increase the temperature, the collisions become more violent. At very high temperatures the collisions become so violent, that the impact can knock some electrons off an atom (ionization). This is where the plasma begins and the gas ends.

 In a plasma the collisions are so intense that the atoms are not able to hold onto their outer electrons. Instead of a large amount of neutral atoms like in the gas, we are left with a mixture of free electrons and ions. This electric soup behaves very differently: it responds to magnetic fields and can conduct electricity very efficiently.

plasma1

 (The phases of matter. Source: NASA)

Most matter in the universe is in plasma form. Scientist believe that only 1 % of all visible matter is either solid, liquid or gaseous. On earth it is different, we rarely see plasmas because the temperatures are too small. But there are some exceptions.

 High-temperature flames can cause a small volume of air to turn into a plasma. This can be seen for example in the so called ionic wind experiment, which shows that a flame is able to transmit electric currents. Gases can’t do that. DARPA, the Pentagon’s research arm, is currently using this phenomenon to develop new methods of fire suppression. Other examples for plasmas on earth are lightnings and the Aurora Borealis.

plasma2

 (Examples of plasmas. Source: Contemporary Physics Education Project)

The barrier between gases and plasmas is somewhat foggy. An important quantity to characterize the transition from gas to plasma is the ionization degree. It tells us how many percent of the atoms have lost one or more electrons. So an ionization degree of 10 % means that only one out of ten atoms is ionized. In this case the gas properties are still dominant.

plasma3

 (Ionization degree of Helium over Temperature. Source: SciVerse)

My Fair Game – How To Use the Expected Value

You meet a nice man on the street offering you a game of dice. For a wager of just 2 $, you can win 8 $ when the dice shows a six. Sounds good? Let’s say you join in and play 30 rounds. What will be your expected balance after that?

You roll a six with the probability p = 1/6. So of the 30 rounds, you can expect to win 1/6 · 30 = 5, resulting in a pay-out of 40 $. But winning 5 rounds of course also means that you lost the remaining 25 rounds, resulting in a loss of 50 $. Your expected balance after 30 rounds is thus -10 $. Or in other words: for the player this game results in a loss of 1/3 $ per round.

 Let’s make a general formula for just this case. We are offered a game which we win with a probability of p. The pay-out in case of victory is P, the wager is W. We play this game for a number of n rounds.

The expected number of wins is p·n, so the total pay-out will be: p·n·P. The expected number of losses is (1-p)·n, so we will most likely lose this amount of money: (1-p)·n·W.

 Now we can set up the formula for the balance. We simply subtract the losses from the pay-out. But while we’re at it, let’s divide both sides by n to get the balance per round. It already includes all the information we need and requires one less variable.

B = p · P – (1-p) · W

This is what we can expect to win (or lose) per round. Let’s check it by using the above example. We had the winning chance p = 1/6, the pay-out P = 8 $ and the wager W = 2 $. So from the formula we get this balance per round:

B = 1/6 · 8 $ – 5/6 · 2 $ = – 1/3 $ per round

Just as we expected. Let’s try another example. I’ll offer you a dice game. If you roll two six in a row, you get P = 175 $. The wager is W = 5 $. Quite the deal, isn’t it? Let’s see. Rolling two six in a row occurs with a probability of p = 1/36. So the expected balance per round is:

B = 1/36 · 175 $ – 35/36 · 5 $ = 0 $ per round

I offered you a truly fair game. No one can be expected to lose in the long run. Of course if we only play a few rounds, somebody will win and somebody will lose.

It’s helpful to understand this balance as being sound for a large number of rounds but rather fragile in case of playing only a few rounds. Casinos are host to thousands of rounds per day and thus can predict their gains quite accurately from the balance per round. After a lot of rounds, all the random streaks and significant one-time events hardly impact the total balance anymore. The real balance will converge to the theoretical balance more and more as the number of rounds grows. This is mathematically proven by the Law of Large Numbers. Assuming finite variance, the proof can be done elegantly using Chebyshev’s Inequality.

The convergence can be easily demonstrated using a computer simulation. We will let the computer, equipped with random numbers, run our dice game for 2000 rounds. After each round the computer calculates the balance per round so far. The below picture shows the difference between the simulated balance per round and our theoretical result of – 1/3 $ per round.

Image

(Liked the excerpt? Get the book “Statistical Snacks” by Metin Bektas here: http://www.amazon.com/Statistical-Snacks-ebook/dp/B00DWJZ9Z2)