While doing research for my new book “More Great Formulas Explained”, I came across a neat formula that can be used to calculate the surface area of a person. It goes by the name **Mosteller formula** and requires two inputs: the mass m (in kg) and the height h (in cm). The surface area S (in m²) is proportional to the square root of m times h:

S = sqrt (m * h / 3600)

For example, a person with the weight m = 75 kg and height h = 175 cm can be expected to have the body surface area S = 1.91 m². A note for American readers: you can use this table to easily convert the height in feet / inches to centimeters.

What’s the use of this? In my book I needed to know this quantity to compute heat loss. According to Newton’s law of cooling, the heat loss rate P (in Watt = Joules per second) is proportional to the surface area S and the temperature difference ΔT (in °C or K):

P = a * S *ΔT

with a being the so called heat transfer coefficient. For calm air it has the value a = 10 W/(m² * K). A person’s body temperature is around 37 °C. So the m = 75 kg and h = 175 cm person from above would lose this amount of heat every second at an air temperature of 20 °C:

P = 10 W/(m² * K) * 1.91 m² * 17 °C = 325 Watt

That is of course assuming the person is naked, clothing will reduce this value significantly. So the surface area formula indeed is useful.