NASA

NASA’s O-Ring Problem and the Challenger Disaster

In January 1986 the world watched in shock as the Challenger Space Shuttle, on its way to carry the first civilian to space, exploded just two minutes after lift-off. A presidential commission later determined that an O-ring failure in the Solid Rocket Booster (SRB) caused the disaster. This was not a new problem, there’s a long history of issues with the O-rings leading up to Challenger’s loss.

Before the Space Shuttle was declared operational, it performed four test flights to space and back. The first O-ring anomaly occurred on the second test flight, named STS-2 (November 1981). After each flight Thiokol, the company in charge of manufacturing the SRBs, sent a team of engineers to inspect the retrieved boosters. The engineers found that the primary O-ring had eroded by 0.053”. The secondary O-ring, which serves as a back-up for the primary O-ring, showed no signs of erosion. On further inspection the engineers also discovered that the putty protecting the O-rings from the hot gas inside the SRB had blow-holes.

Luckily, the O-rings sealed the SRB despite the erosion. Simulations done by engineers after the STS-2 O-ring anomaly showed that even with 0.095” erosion the primary O-ring would perform its duty up to a pressure of 3000 psi (the pressure inside the SRB only goes up to about 1000 psi). And if the erosion was even stronger, the second O-ring could still finish the job. So neither Thiokol nor NASA, neither engineers nor managers considered the problem to be critical. After the putty composition was slightly altered to prevent blow-holes from forming, the problem was considered solved. The fact that no erosion occurred on the following flights seemed to confirm this.

On STS-41-B (February 1984), the tenth Space Shuttle mission including the four test flights, the anomaly surfaced again. This time two primary O-rings were affected and there were again blow-holes in the putty. However, the erosion was within the experience base (the 0.053” that occurred on STS-2) and within the safety margin (the 0.095” resulting from simulations). So neither Thiokol nor NASA was alarmed over this.

Engineers realized that it was the leak check that caused the blow-holes in the putty. The leak check was an important tool to confirm that the O-rings are properly positioned. This was done by injecting pressurized air in the space between the primary and secondary O-ring. Initially a pressure of 50 psi was used, but this was increased to 200 psi prior to STS-41-B to make the test more reliable. After this change, O-ring erosion occurred more frequently and became a normal aspect of Space Shuttle flights.

On STS-41-C (April 1984), the eleventh overall mission, there was again primary O-ring erosion within the experience base and safety margin. The same was true for STS-41-D (August 1984), the mission following STS-41-C. This time however a new problem accompanied the known erosion anomaly. Engineers found a small amount of soot behind the primary O-ring, meaning that hot gas was able to get through before the O-ring sealed. There was no impact on the secondary O-ring. This blow-by was determined to be an acceptable risk and the flights continued.

The second case of blow-by occurred on STS-51-C (January 1985), the fifteenth mission. There was erosion and blow-by on two primary O-rings and the blow-by was worse than before. It was the first time that hot gas had reached the secondary O-ring, luckily without causing any erosion. It was also the first time that temperature was discussed as a factor. STS-51-C was launched at 66 °F and the night before the temperature dropped to an unusually low 20 °F. So the Space Shuttle and its components was even colder than the 66 °F air temperature. Estimates by Thiokol engineers put the O-ring temperature at launch at around 53 °F. Since rubber gets harder at low temperatures, low temperatures might reduce the O-rings sealing capabilities. But there was no hard data to back this conclusion up.

Despite the escalation of O-ring anomalies, the risk was again determined to be acceptable, by Thiokol as well as by NASA. The rationale behind this decision was:

  • Experience Base: All primary O-ring erosions that occurred after STS-2 were within the 0.053” experience base.

  • Safety Margin: Even with 0.095” erosion the primary O-ring would seal.

  • Redundancy: If the primary O-ring failed, the secondary O-ring would seal.

The following missions saw more escalation of the problem. On STS-51-D (early April 1985), carrying the first politician to space, primary O-ring erosion reached an unprecedented 0.068”. This was outside the experience base, but still within the safety margin. And on STS-51-B (late April 1985) a primary O-ring eroded by 0.171”, significantly outside experience base and safety margin. It practically burned through. On top of that, the Space Shuttle saw its first case of secondary O-ring erosion (0.032”).

Post-flight analysis showed that the burnt-through primary O-ring on STS-51-B was not properly positioned, which led to changes in the leak check procedure. Simulations showed that O-ring erosion could go up to 0.125” before the ability to seal would be lost and that under worst case conditions the secondary O-ring would erode by no more than 0.075”. So it seemed impossible that the secondary O-ring could fail and the risk again was declared acceptable. Also, the fact that the O-ring temperature at STS-51-B’s launch was 75 °F seemed to contradict the temperature effect.

Despite these reassurances, concerns escalated and O-ring task forces were established at Thiokol and Marshall (responsible for the Solid Rocket Motor). Space Shuttle missions continued while engineers were looking for short- and long-term solutions.

On the day of STS-51-L’s launch (January 1986), the twenty-fifth Space Shuttle mission, the temperature was expected to drop to the low 20s. Prior to launch a telephone conference was organized to discuss the effects of low temperatures on O-ring sealing. Present at the conference were engineers and managers from Thiokol, Marshall and NASA. Thiokol engineers raised concerns that the seal might fail, but were not able to present any conclusive data. Despite that, Thiokol management went along with the engineer’s position and decided not to recommend launch for temperatures below 53 °F.

The fact that there was no conclusive data supporting this new launch criterion, that Thiokol did not raise these concerns before and just three weeks ago recommended launch for STS-61-C at 40 °F caused outrage at Marshall and NASA. Thiokol then went off-line to discuss the matter and management changed their position despite the warnings of their engineers. After 30 minutes the telcon resumed and Thiokol gave their go to launch the Challenger Space Shuttle. Shortly after lift-off the O-rings failed, hot gas leaked out of the SRB and the shuttle broke apart.

If you’d like to know more, check out this great book (which served as the source for this post):

The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA

Here you can find a thorough accident investigation report by NASA:

For the broader picture you can check out this great documentary:

More on Space Shuttles in general can be found here: Space Shuttle Launch and Sound Suppression.

Space Shuttle Launch and Sound Suppression

The Space Shuttle’s first flight (STS-1) in 1981 was considered a great success as almost all the technical and scientific goals were achieved. However, post flight analysis showed one potentially fatal problem: 16 heat shield tiles had been destroyed and another 148 damaged. How did that happen? The culprit was quickly determined to be sound. During launch the shuttle’s main engine and the SRBs (Solid Rocket Boosters) produce intense sound waves which cause strong vibrations. A sound suppression system was needed to protect the shuttle from acoustically induced damage such as cracks and mechanical fatigue. But how do you suppress the sound coming from a jet engine?

Let’s take a step back. What is the source of this sound? When the hot exhaust gas meets the ambient air, mixing occurs. This leads to the formation of a large number of eddies. The small-scale eddies close to the engine are responsible for high frequency noise, while the large-scale eddies that appear downstream cause intense low-frequency noise. Lighthill showed that the power P (in W) of the sound increases with the jet velocity v (in m/s) and the size s (in m) of the eddies:

P = K * D * c-5 * s2 * v8

with K being a constant, D the exhaust gas density and c the speed of sound. Note the extremely strong dependence of acoustic power on jet velocity: if you double the velocity, the power increases by a factor of 256. Such a strong relationship is very unusual in physics. The dependence on eddy size is also significant, doubling the size leads to a quadrupling in power. The formula tells us what we must do to effectively suppress sound: reduce jet velocity and the size of the eddies. Water injection into the exhaust gas achieves both. The water droplets absorb kinetic energy from the gas molecules, thus slowing them down. At the same time, the water breaks down the eddies.

During the second Space Shuttle launch (STS-2) a water injection system was used to suppress potentially catastrophic acoustic vibrations. This proved to be successful, it reduced the sound level by 10 – 20 dB (depending on location), and accordingly was used during every launch since then. But large amounts of water are needed to accomplish this reduction. The tank at the launch pad holds about 300,000 gallons. The flow starts at T minus 6.6 seconds and last for about 20 seconds. The peak flow rate is roughly 15,000 gallons per seconds. That’s a lot of water!

The video below shows a test run of the sound suppression system:

Sources and further reading:

Click to access art09.pdf

http://www-pao.ksc.nasa.gov/nasafact/count4ssws.htm

Click to access CAE_XUYue_Investigation-of-Flow-Control-with-Fluidic-injection-for-Jet-Noise-Reduction.pdf

The Fourth State of Matter – Plasmas

From our everyday lifes we are used to three states of matter: solid, liquid and gas. When we heat a solid it melts and becomes liquid. Heating this liquid further will cause it to evaporate to a gas. Usually this is what we consider to be the end of the line. But heating a gas leads to many surprises, it eventually turns into a state, which behaves completely different than ordinary gases. We call matter in that state a plasma.

 To understand why at some point a gas will exhibit an unusual behaviour, we need to look at the basic structure of matter. All matter consists of atoms. The Greeks believed this to be the undivisible building blocks of all objects. Scientists however have discovered, that atoms do indeed have an inner structure and are divisible. It takes an enormous amount to split atoms, but it can be done.

 Further research showed that atoms consist of three particles: neutrons, protons and electrons. The neutrons and protons are crammed into the atomic core, while the electrons surround this core. Usually atoms are not charged, because they contain as much protons (positively charged) as electrons (negatively charged). The charges balance each other. Only when electrons are missing does the atom become electric. Such charged atoms are called ions.

 In a gas the atoms are neutral. Each atom has as many protons as electrons, they are electrically balanced. When you apply a magnetic field to a gas, it does not respond. If you try to use the gas to conduct electricity, it does not work.

 Remember that gas molecules move at high speeds and collide frequently with each other. As you increase the temperature, the collisions become more violent. At very high temperatures the collisions become so violent, that the impact can knock some electrons off an atom (ionization). This is where the plasma begins and the gas ends.

 In a plasma the collisions are so intense that the atoms are not able to hold onto their outer electrons. Instead of a large amount of neutral atoms like in the gas, we are left with a mixture of free electrons and ions. This electric soup behaves very differently: it responds to magnetic fields and can conduct electricity very efficiently.

plasma1

 (The phases of matter. Source: NASA)

Most matter in the universe is in plasma form. Scientist believe that only 1 % of all visible matter is either solid, liquid or gaseous. On earth it is different, we rarely see plasmas because the temperatures are too small. But there are some exceptions.

 High-temperature flames can cause a small volume of air to turn into a plasma. This can be seen for example in the so called ionic wind experiment, which shows that a flame is able to transmit electric currents. Gases can’t do that. DARPA, the Pentagon’s research arm, is currently using this phenomenon to develop new methods of fire suppression. Other examples for plasmas on earth are lightnings and the Aurora Borealis.

plasma2

 (Examples of plasmas. Source: Contemporary Physics Education Project)

The barrier between gases and plasmas is somewhat foggy. An important quantity to characterize the transition from gas to plasma is the ionization degree. It tells us how many percent of the atoms have lost one or more electrons. So an ionization degree of 10 % means that only one out of ten atoms is ionized. In this case the gas properties are still dominant.

plasma3

 (Ionization degree of Helium over Temperature. Source: SciVerse)